Publications

Read our full publications on oogle Scholar , NASA-ADS , or ORCID iD iconORCID .

  1. A.A. Aziz, et al. (including Kuo-Chuan Pan), “Progress in Nuclear Astrophysics of East and Southeast Asia”, 2021, AAPPS (Association of Asia Pacific Physical Societies) Bulletin; A.A.Aziz, et al. AAPPS Bulletin 31 [Link]
  2. B. Yu, E. Owen, Kuo-Chuan Pan, K. Wu and I. Ferreras, “Outflows from starburst galaxies with various driving mechanismsand their X-ray properties”, 2021, MNRAS, 508, 5092 [Link]
  3. M.A. Pajkos, M.L. Warren, S.M. Couch, E. O’Connor, and Kuo-Chuan Pan, “Determining the Structure of Rotating Massive Stellar Cores with Gravitational Waves”, 2021, ApJ, 914, 80 [Link]
  4. Kuo-Chuan Pan, M. Liebendörfer, S. M. Couch, and F.-K. Thielemann, “Stellar Mass Black Hole Formation and Multi-messenger Signals from Three Dimensional Rotating Core-Collapse Supernova Simulations”, 2021, ApJ, 914, 140 [Link]
  5. Chuan-Jui Li, Wolfgang E. Kerzendorf, You-Hua Chu, Ting-Wan Chen, Tuan Do, Robert A. Gruendl, Abigail Holmes, R. Ishioka, Bruno Leibundgut, Kuo-Chuan Pan, Paul M. Ricker, and Daniel Weisz, “Search for Surviving Companions of Progenitors of Young LMC Type Ia Supernova Remnants”, 2019, ApJ, 886, 99 [Link]
  6. Michael P. Pajkos, Sean M. Couch, Kuo-Chuan Pan, and Evan P. O’Connor, “Features of Accretion Phase Gravitational Wave Emission from Two-Dimensional Rotating Core-Collapse Supernovae”, 2019, ApJ, 878, 13 [Link]
  7. Kuo-Chuan Pan, Carlos Mattes, Evan P. O’Connor, Sean M. Couch, Albino Perego, and Almudena Arcones, “The Impact of Different Neutrino Transport Methods on Multidimensional Core-Collapse Supernova Simulations”, 2018, J. Phys. G focus issue on core-collapse supernovae, 46, 014001 [Link]
  8. Rubén M. Cabezón, Kuo-Chuan Pan, Matthias Liebendörfer, Takami Kuroda, Kevin Ebinger, Oliver Heinimann, Friedrich-Karl Thielemann, and Albino Perego, “Core-collapse supernovae in the hall of mirrors. A three-dimensional code-comparison project”, 2018, A&A, 619, A118 [Link]
  9. Kuo-Chuan Pan, M. Liebendörfer, S. M. Couch, and F.-K. Thielemann, “Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation”, 2018, ApJ, 857, 13 [Link]
  10. Kuo-Chuan Pan, M. Liebendörfer, M. Hempel, and F.-K. Thielemann, “Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport”, the Proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC-XIV 2016), 2017, JPS Conf. Proc. 14, 20703 [Link]
  11. Litke, Y.-H. Chu, A. Holmes, R. Santucci, T. Blindauer, R. A. Gruendl, C.-J. Li, Kuo-Chuan Pan, P. M. Ricker, and D. R. Weisz, “Nature of the Diffuse Source and its Central Point-like Source in SRN 0509-67.5”, 2017, ApJ, 837, 111 [Link]
  12. C.-J. Li, Y.-H. Chu, R. A. Gruendl, D. R. Weisz, Kuo-Chuan Pan, S. D. Points, P. M. Ricker, R. C. Smith, and F. M. Walter, “Physical Structures of the Type Ia Supernova Remnant N103B”, 2017, ApJ, 836, 85 [Link]
  13. Kuo-Chuan Pan, M. Liebendörfer, M. Hempel, and F.-K. Thielemann, “Two-Dimensional Core-Collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport”, 2016, ApJ, 817, 72 [Link]
  14. Kuo-Chuan Pan, P. M. Ricker, and R. E. Taam, “Simulations of the symbiotic recurrent nova V407-Cyg. I. Accretion and shock evolutions”, 2015, ApJ, 806, 27 [Link]
  15. Kuo-Chuan Pan, P. M. Ricker, and R. E. Taam, “Search for Surviving Companions in Type Ia Supernova Remnants”, 2014, ApJ, 792, 71 [Link]
  16. Kuo-Chuan Pan, “The fates of binary companions in Type Ia supernovae within the single-degenerate scenario”, 2013, Ph.D. Dissertation, University of Illinois at Urbana-Champaign [Link]
  17. Kuo-Chuan Pan, P. M. Ricker, and R. E. Taam, “Evolution of Post-Impact Helium stars in Type Ia Supernova Remnants within the Single-Degenerate Scenario”, 2013, ApJ, 733, 49 [Link]
  18. Kuo-Chuan Pan, P. M. Ricker, and R. E. Taam, “Evolution of Post-Impact Companion Stars in SN Ia Remnants Within Single-Degenerate Scenario”, 2012, ApJ, 760, 21 [Link]
  19. Kuo-Chuan Pan, P. M. Ricker, and R. E. Taam, “Impact of Type Ia Supernova Ejecta on Binary Companions in the Single-Degenerate Scenario”, 2012, ApJ, 750, 151 [Link]
  20. A. Langer, J. Lifflander, P. Miller, Kuo-Chuan Pan, L. Kale, and P. Ricker, “Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement”, 2012, “Proceedings of the IEEE 24th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2012)” [Link]
  21. P. M. Ricker, Kuo-Chuan Pan, and R. E. Taam, “The Impact of Type Ia Supernova Ejecta on Binary Systems”, 2010, AIP Conference Series 1314 250 [Link]
  22. S. Negara, G. Zheng, Kuo-Chuan Pan, N. Negara, J. Ralph, L. Kale, P. M. Ricker, “Automatic MPI to AMPI Program Transformation using Photran”, 2010, “Proceedings of the 3rd Workshop on Productivity and Performance (PROPER 2010)” at EuroPar 2010 [Link]
  23. S. Negara, Kuo-Chuan Pan, G. Zheng, N. Negara, J. Ralph, L. Kale, P. M. Ricker, “Automatic MPI to AMPI Program Transformation”, 2010, “Charm++ Workshop 2010” [Link]
  24. Kuo-Chuan Pan, P. M. Ricker, and R. E. Taam, “Impact of Type Ia Supernova Ejecta on a Helium Star Binary Companion”, 2010, ApJ, 715, 78 [Link]
  25. A. Kemball, P. Diamond, I. Gonidakis, M. Mitra, K. Yim, Kuo-Chuan Pan, and H.-F. Chiang,“Multi-Epoch Imaging Polarimetry of the SiO Masers in the Extended Atmosphere of the Mira Variable TX Cam”, 2009, ApJ, 698, 1721 [Link]

    LIGO-Virgo-KAGRA Collaboration papers

  26. LIGO-Virgo-KAGRA collaboration, “Search for intermediate mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo”, submitted[Link]
  27. LIGO-Virgo-KAGRA collaboration, “Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third observing run”, submitted, [Link]
  28. LIGO-Virgo-KAGRA collaboration, “Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo”, submitted, [Link]
  29. LIGO-Virgo-KAGRA collaboration, “Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537-6910”, submitted [Link]
  30. LIGO-Virgo-KAGRA collaboration, “Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO’s and Advanced Virgo’s first three observing run”, acceoted by PRD [Link]
  31. LIGO-Virgo-KAGRA collaboration, “Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO’s and Advanced Virgo’s Third Observing Run”, 2021, accepted by PRD [Link]
  32. LIGO-Virgo-KAGRA collaboration, “Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences”, 2021, ApJL, 915, L5 [Link]
  33. LIGO-Virgo-KAGRA collaboration, “Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910”, 2021, ApJL, 913, L27 [Link]
  34. LIGO-Virgo-KAGRA collaboration, “Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run”, 2021, PRL, 126, 241102 [Link]
  35. T. Akutsu et al. (KAGRA Collaboration), “Radiative Cooling of the Thermally Isolated System in KAGRA Gravitational Wave Telescope”, 2021, Journal of Physics: Conference Series 1857 (1), 012002
  36. T. Akutsu et al. (KAGRA Collaboration), “Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector”, 2021, Class. Quantum Grav. 38 065011
  37. T. Akutsu et al. (KAGRA Collaboration), “Overview of KAGRA : Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer”, 2021, Prog. Theor. Exp. Phys.
  38. T. Akutsu et al. (KAGRA Collaboration), “Overview of KAGRA : Detector design and construction history”, 2020, Prog. Theor. Exp. Phys.
  39. T. Akutsu et al. (KAGRA Collaboration), “Overview of KAGRA : KAGRA science”, 2020, Prog. Theor. Exp. Phys.
  40. LIGO-Virgo-KAGRA collaboration, “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA”, 2020, Living Review of Relativity [Link]
  41. T. Akutsu et al. (KAGRA Collaboration), “Application of the independent component analysis to the iKAGRA data”, 2020, Prog. Theor. Exp. Phys., 053F01
  42. T. Akutsu et al. (KAGRA Collaboration), “An arm length stabilization system with vertex injection of auxiliary lasers: a new scheme scalable to longer-baseline gravitational wave detectors”, 2020, Classical and Quantum Gravity, 37, 5004

Public Science Articles

  1. Kuo-Chuan Pan, 2021, “墜入深淵”, 物理雙月刊2021年二月號, 43:1, 035-040 [Link]
  2. Kuo-Chuan Pan, 2019, “來自星星的我們:超新星爆炸”, 蔚為奇談!宇宙人的天文百科, 三民書局 [Link]
  3. Kuo-Chuan Pan, 2019, “星星電力公司:恆星演化與內部的核融合反應”, 蔚為奇談!宇宙人的天文百科, 三民書局 [Link]
  4. Kuo-Chuan Pan, 2017, “超新星 SN 1987A 30週年 - 超新星理論模型” , 科學月刊, 2017年十月號 (574期) [Link]

Top
Top